/* * NeuQuant Neural-Net Quantization Algorithm * ------------------------------------------ * * Copyright (c) 1994 Anthony Dekker * * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. See * "Kohonen neural networks for optimal colour quantization" in "Network: * Computation in Neural Systems" Vol. 5 (1994) pp 351-367. for a discussion of * the algorithm. * * Any party obtaining a copy of these files from the author, directly or * indirectly, is granted, free of charge, a full and unrestricted irrevocable, * world-wide, paid up, royalty-free, nonexclusive right and license to deal in * this software and documentation files (the "Software"), including without * limitation the rights to use, copy, modify, merge, publish, distribute, * sublicense, and/or sell copies of the Software, and to permit persons who * receive copies from any such party to do so, with the only requirement being * that this copyright notice remain intact. */ /* * This class handles Neural-Net quantization algorithm * @author Kevin Weiner (original Java version - kweiner@fmsware.com) * @author Thibault Imbert (AS3 version - bytearray.org) * @version 0.1 AS3 implementation */ package org.bytearray.gif.encoder { import flash.utils.ByteArray; public class NeuQuant { private static var netsize:int = 256; /* number of colours used */ /* four primes near 500 - assume no image has a length so large */ /* that it is divisible by all four primes */ private static var prime1:int = 499; private static var prime2:int = 491; private static var prime3:int = 487; private static var prime4:int = 503; private static var minpicturebytes:int = (3 * prime4); /* minimum size for input image */ /* * Program Skeleton ---------------- [select samplefac in range 1..30] [read * image from input file] pic = (unsigned char*) malloc(3*width*height); * initnet(pic,3*width*height,samplefac); learn(); unbiasnet(); [write output * image header, using writecolourmap(f)] inxbuild(); write output image using * inxsearch(b,g,r) */ /* * Network Definitions ------------------- */ private static var maxnetpos:int = (netsize - 1); private static var netbiasshift:int = 4; /* bias for colour values */ private static var ncycles:int = 100; /* no. of learning cycles */ /* defs for freq and bias */ private static var intbiasshift:int = 16; /* bias for fractions */ private static var intbias:int = (1 << intbiasshift); private static var gammashift:int = 10; /* gamma = 1024 */ private static var gamma:int = (1 << gammashift); private static var betashift:int = 10; private static var beta:int = (intbias >> betashift); /* beta = 1/1024 */ private static var betagamma:int = (intbias << (gammashift - betashift)); /* defs for decreasing radius factor */ private static var initrad:int = (netsize >> 3); /* * for 256 cols, radius * starts */ private static var radiusbiasshift:int = 6; /* at 32.0 biased by 6 bits */ private static var radiusbias:int = (1 << radiusbiasshift); private static var initradius:int = (initrad * radiusbias); /* * and * decreases * by a */ private static var radiusdec:int = 30; /* factor of 1/30 each cycle */ /* defs for decreasing alpha factor */ private static var alphabiasshift:int = 10; /* alpha starts at 1.0 */ private static var initalpha:int = (1 << alphabiasshift); private var alphadec:int /* biased by 10 bits */ /* radbias and alpharadbias used for radpower calculation */ private static var radbiasshift:int = 8; private static var radbias:int = (1 << radbiasshift); private static var alpharadbshift:int = (alphabiasshift + radbiasshift); private static var alpharadbias:int = (1 << alpharadbshift); /* * Types and Global Variables -------------------------- */ private var thepicture:ByteArray/* the input image itself */ private var lengthcount:int; /* lengthcount = H*W*3 */ private var samplefac:int; /* sampling factor 1..30 */ // typedef int pixel[4]; /* BGRc */ private var network:Array; /* the network itself - [netsize][4] */ protected var netindex:Array = new Array(); /* for network lookup - really 256 */ private var bias:Array = new Array(); /* bias and freq arrays for learning */ private var freq:Array = new Array(); private var radpower:Array = new Array(); public function NeuQuant(thepic:ByteArray, len:int, sample:int) { var i:int; var p:Array; thepicture = thepic; lengthcount = len; samplefac = sample; network = new Array(netsize); for (i = 0; i < netsize; i++) { network[i] = new Array(4); p = network[i]; p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize; freq[i] = intbias / netsize; /* 1/netsize */ bias[i] = 0; } } private function colorMap():ByteArray { var map:ByteArray = new ByteArray; var index:Array = new Array(netsize); for (var i:int = 0; i < netsize; i++) index[network[i][3]] = i; var k:int = 0; for (var l:int = 0; l < netsize; l++) { var j:int = index[l]; map[k++] = (network[j][0]); map[k++] = (network[j][1]); map[k++] = (network[j][2]); } return map; } /* * Insertion sort of network and building of netindex[0..255] (to do after * unbias) * ------------------------------------------------------------------------------- */ private function inxbuild():void { var i:int; var j:int; var smallpos:int; var smallval:int; var p:Array; var q:Array; var previouscol:int var startpos:int previouscol = 0; startpos = 0; for (i = 0; i < netsize; i++) { p = network[i]; smallpos = i; smallval = p[1]; /* index on g */ /* find smallest in i..netsize-1 */ for (j = i + 1; j < netsize; j++) { q = network[j]; if (q[1] < smallval) { /* index on g */ smallpos = j; smallval = q[1]; /* index on g */ } } q = network[smallpos]; /* swap p (i) and q (smallpos) entries */ if (i != smallpos) { j = q[0]; q[0] = p[0]; p[0] = j; j = q[1]; q[1] = p[1]; p[1] = j; j = q[2]; q[2] = p[2]; p[2] = j; j = q[3]; q[3] = p[3]; p[3] = j; } /* smallval entry is now in position i */ if (smallval != previouscol) { netindex[previouscol] = (startpos + i) >> 1; for (j = previouscol + 1; j < smallval; j++) netindex[j] = i; previouscol = smallval; startpos = i; } } netindex[previouscol] = (startpos + maxnetpos) >> 1; for (j = previouscol + 1; j < 256; j++) netindex[j] = maxnetpos; /* really 256 */ } /* * Main Learning Loop ------------------ */ private function learn():void { var i:int; var j:int; var b:int; var g:int var r:int; var radius:int; var rad:int; var alpha:int; var step:int; var delta:int; var samplepixels:int; var p:ByteArray; var pix:int; var lim:int; if (lengthcount < minpicturebytes) samplefac = 1; alphadec = 30 + ((samplefac - 1) / 3); p = thepicture; pix = 0; lim = lengthcount; samplepixels = lengthcount / (3 * samplefac); delta = samplepixels / ncycles; alpha = initalpha; radius = initradius; rad = radius >> radiusbiasshift; if (rad <= 1) rad = 0; for (i = 0; i < rad; i++) radpower[i] = alpha * (((rad * rad - i * i) * radbias) / (rad * rad)); if (lengthcount < minpicturebytes) step = 3; else if ((lengthcount % prime1) != 0) step = 3 * prime1; else { if ((lengthcount % prime2) != 0) step = 3 * prime2; else { if ((lengthcount % prime3) != 0) step = 3 * prime3; else step = 3 * prime4; } } i = 0; while (i < samplepixels) { b = (p[pix + 0] & 0xff) << netbiasshift; g = (p[pix + 1] & 0xff) << netbiasshift; r = (p[pix + 2] & 0xff) << netbiasshift; j = contest(b, g, r); altersingle(alpha, j, b, g, r); if (rad != 0) alterneigh(rad, j, b, g, r); /* alter neighbours */ pix += step; if (pix >= lim) pix -= lengthcount; i++; if (delta == 0) delta = 1; if (i % delta == 0) { alpha -= alpha / alphadec; radius -= radius / radiusdec; rad = radius >> radiusbiasshift; if (rad <= 1) rad = 0; for (j = 0; j < rad; j++) radpower[j] = alpha * (((rad * rad - j * j) * radbias) / (rad * rad)); } } } /* ** Search for BGR values 0..255 (after net is unbiased) and return colour * index * ---------------------------------------------------------------------------- */ public function map(b:int, g:int, r:int):int { var i:int; var j:int; var dist:int var a:int; var bestd:int; var p:Array; var best:int; bestd = 1000; /* biggest possible dist is 256*3 */ best = -1; i = netindex[g]; /* index on g */ j = i - 1; /* start at netindex[g] and work outwards */ while ((i < netsize) || (j >= 0)) { if (i < netsize) { p = network[i]; dist = p[1] - g; /* inx key */ if (dist >= bestd) i = netsize; /* stop iter */ else { i++; if (dist < 0) dist = -dist; a = p[0] - b; if (a < 0) a = -a; dist += a; if (dist < bestd) { a = p[2] - r; if (a < 0) a = -a; dist += a; if (dist < bestd) { bestd = dist; best = p[3]; } } } } if (j >= 0) { p = network[j]; dist = g - p[1]; /* inx key - reverse dif */ if (dist >= bestd) j = -1; /* stop iter */ else { j--; if (dist < 0) dist = -dist; a = p[0] - b; if (a < 0) a = -a; dist += a; if (dist < bestd) { a = p[2] - r; if (a < 0)a = -a; dist += a; if (dist < bestd) { bestd = dist; best = p[3]; } } } } } return (best); } public function process():ByteArray { learn(); unbiasnet(); inxbuild(); return colorMap(); } /* * Unbias network to give byte values 0..255 and record position i to prepare * for sort * ----------------------------------------------------------------------------------- */ private function unbiasnet():void { var i:int; var j:int; for (i = 0; i < netsize; i++) { network[i][0] >>= netbiasshift; network[i][1] >>= netbiasshift; network[i][2] >>= netbiasshift; network[i][3] = i; /* record colour no */ } } /* * Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in * radpower[|i-j|] * --------------------------------------------------------------------------------- */ private function alterneigh(rad:int, i:int, b:int, g:int, r:int):void { var j:int; var k:int; var lo:int; var hi:int; var a:int; var m:int; var p:Array; lo = i - rad; if (lo < -1) lo = -1; hi = i + rad; if (hi > netsize) hi = netsize; j = i + 1; k = i - 1; m = 1; while ((j < hi) || (k > lo)) { a = radpower[m++]; if (j < hi) { p = network[j++]; try { p[0] -= (a * (p[0] - b)) / alpharadbias; p[1] -= (a * (p[1] - g)) / alpharadbias; p[2] -= (a * (p[2] - r)) / alpharadbias; } catch (e:Error) {} // prevents 1.3 miscompilation } if (k > lo) { p = network[k--]; try { p[0] -= (a * (p[0] - b)) / alpharadbias; p[1] -= (a * (p[1] - g)) / alpharadbias; p[2] -= (a * (p[2] - r)) / alpharadbias; } catch (e:Error) {} } } } /* * Move neuron i towards biased (b,g,r) by factor alpha * ---------------------------------------------------- */ private function altersingle(alpha:int, i:int, b:int, g:int, r:int):void { /* alter hit neuron */ var n:Array = network[i]; n[0] -= (alpha * (n[0] - b)) / initalpha; n[1] -= (alpha * (n[1] - g)) / initalpha; n[2] -= (alpha * (n[2] - r)) / initalpha; } /* * Search for biased BGR values ---------------------------- */ private function contest(b:int, g:int, r:int):int { /* finds closest neuron (min dist) and updates freq */ /* finds best neuron (min dist-bias) and returns position */ /* for frequently chosen neurons, freq[i] is high and bias[i] is negative */ /* bias[i] = gamma*((1/netsize)-freq[i]) */ var i:int; var dist:int; var a:int; var biasdist:int; var betafreq:int; var bestpos:int; var bestbiaspos:int; var bestd:int; var bestbiasd:int; var n:Array; bestd = ~(1 << 31); bestbiasd = bestd; bestpos = -1; bestbiaspos = bestpos; for (i = 0; i < netsize; i++) { n = network[i]; dist = n[0] - b; if (dist < 0) dist = -dist; a = n[1] - g; if (a < 0) a = -a; dist += a; a = n[2] - r; if (a < 0) a = -a; dist += a; if (dist < bestd) { bestd = dist; bestpos = i; } biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift)); if (biasdist < bestbiasd) { bestbiasd = biasdist; bestbiaspos = i; } betafreq = (freq[i] >> betashift); freq[i] -= betafreq; bias[i] += (betafreq << gammashift); } freq[bestpos] += beta; bias[bestpos] -= betagamma; return (bestbiaspos); } } }